
Performance Analysis

Kuan-Yu Chen (陳冠宇)

2020/09/21 @ TR-313, NTUST



2

Review

• Data type determines the set of values that a data item can 
take and the operations that can be performed on the item

• Algorithm and Program
– Algorithms + Data Structures = Programs

• Recursive Functions
– Direct 

– Indirect
– Tail

– Compared with non-recursive functions



3

Space and Time Complexity

• Analyzing an algorithm means determining the amount of 
resources (such as time and memory) needed to execute it
– The time complexity of an algorithm is basically the running 

time of a program as a function of a given input 

– The space complexity of an algorithm is the amount of 
computer memory that is required during the program 
execution as a function of a given input



4

Space Complexity

• The space analysis can be classified into two parts
– Fixed part

• The instruction space, space for simple variables, space for 
constants, etc

– Variable part
• Space needed by referenced variables

• The recursion stack space

– Accordingly, the space requirement 𝑆(𝑃) of a program 𝑃 can be 
defined

• We usually concentrate on 𝑆𝑝

𝑆 𝑃 = 𝑐 + 𝑆𝑝

fixed part

usually a constant

variable part

depend on the task



5

Recursion Stack Space.

• Given an Ackerman’s function 𝐴(𝑚, 𝑛), please calculate 
𝐴(1,2)

𝐴 𝑚, 𝑛 = ൞

𝑛 + 1, 𝑖𝑓 𝑚 = 0

𝐴 𝑚 − 1,1 , 𝑖𝑓 𝑛 = 0

𝐴 𝑚 − 1, 𝐴 𝑚, 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐴 1,2 = 𝐴 0,𝐴 1,1

𝐴 1,1 = 𝐴 0,𝐴 1,0

𝐴 1,0 = 𝐴 0,1

𝐴 0,1 = 2



6

Recursion Stack Space..

• Given an Ackerman’s function 𝐴(𝑚, 𝑛), please calculate 
𝐴(1,2)

𝐴 𝑚, 𝑛 = ൞

𝑛 + 1, 𝑖𝑓 𝑚 = 0

𝐴 𝑚 − 1,1 , 𝑖𝑓 𝑛 = 0

𝐴 𝑚 − 1, 𝐴 𝑚, 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐴 1,2 = 𝐴 0,𝐴 1,1 = 𝐴 0,3 = 4

𝐴 1,1 = 𝐴 0,𝐴 1,0 = 𝐴 0,2 = 3

𝐴 1,0 = 𝐴 0,1 = 2

𝐴 0,1 = 2



7

Recursion Stack Space...

• Given an Ackerman’s function 𝐴(𝑚, 𝑛), please calculate 
𝐴(1,2)

𝐴 𝑚, 𝑛 = ൞

𝑛 + 1, 𝑖𝑓 𝑚 = 0

𝐴 𝑚 − 1,1 , 𝑖𝑓 𝑛 = 0

𝐴 𝑚 − 1, 𝐴 𝑚, 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐴 1,2 = 𝐴 0,𝐴 1,1

𝐴 1,1 = 𝐴 0,𝐴 1,0

𝐴 1,0 = 𝐴 0,1
𝐴(1,2)

𝐴(1,1)

𝐴 0,1 = 2

𝐴(1,0)



8

Recursion Stack Space….

• Given an Ackerman’s function 𝐴(𝑚, 𝑛), please calculate 
𝐴(1,2)

𝐴 𝑚, 𝑛 = ൞

𝑛 + 1, 𝑖𝑓 𝑚 = 0

𝐴 𝑚 − 1,1 , 𝑖𝑓 𝑛 = 0

𝐴 𝑚 − 1, 𝐴 𝑚, 𝑛 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐴 1,2 = 𝐴 0,𝐴 1,1 = 𝐴 0,3 = 4

𝐴 1,1 = 𝐴 0,𝐴 1,0 = 𝐴 0,2 = 3

𝐴 1,0 = 𝐴 0,1 = 2
𝐴(1,2)

𝐴(1,1)

𝐴 0,1 = 2

𝐴(1,0)



9

Time Complexity

• The time, 𝑇 𝑃 , taken by a program 𝑃 is the sum of the 
compile time and the run (execution) time
– We mainly concentrate on the run time of a program

– There are two ways to determine the run time
• Measurement

Execute the program

Record the CPU time

• Analysis

Count only the number of program steps

Count the number of instructions

𝑇 𝑃 = 𝑐 + 𝑇𝑝

compile time run time



10

Example

• How many times does the function 𝑐𝑎𝑙𝑙_𝑓𝑢𝑛() execute?

෍

𝑎=1

𝑛

𝑎2 − 𝑎 = ෍

𝑎=1

𝑛

𝑎2 −෍

𝑎=1

𝑛

𝑎 =
𝑛 𝑛 + 1 2𝑛 + 1

6
−
𝑛 𝑛 + 1

2
=
𝑛(𝑛 + 1)(𝑛 − 1)

3

෍

𝑎=1

𝑛

𝑎2 = 12 + 22 +⋯+ 𝑛2 =
𝑛 𝑛 + 1 2𝑛 + 1

6



11

Expressing Time and Space Complexity

• The time and space complexities of a given function 𝑓(𝑛), 
where 𝑛 is a given input for the algorithm, can be expressed 
by some notations
– We introduce some terminologies that will enable us to make 

meaningful but inexact statements about the time and space 
complexities of a program



12

Big-Oh.

• 𝑓 𝑛 = O(𝑔(𝑛)) means that 𝑐 × 𝑔(𝑛) is an upper bound on 
the value of 𝑓 𝑛 for all 𝑛, where 𝑛 ≥ 𝑛0



13

Big-Oh.

• 𝑓 𝑛 = O(𝑔(𝑛)) means that 𝑐 × 𝑔(𝑛) is an upper bound on 
the value of 𝑓 𝑛 for all 𝑛, where 𝑛 ≥ 𝑛0



14

Big-Oh.

• 𝑓 𝑛 = O(𝑔(𝑛)) means that 𝑐 × 𝑔(𝑛) is an upper bound on 
the value of 𝑓 𝑛 for all 𝑛, where 𝑛 ≥ 𝑛0



15

Big-Oh.

• 𝑓 𝑛 = O(𝑔(𝑛)) means that 𝑐 × 𝑔(𝑛) is an upper bound on 
the value of 𝑓 𝑛 for all 𝑛, where 𝑛 ≥ 𝑛0



16

Big-Oh.

• 𝑓 𝑛 = O(𝑔(𝑛)) means that 𝑐 × 𝑔(𝑛) is an upper bound on 
the value of 𝑓 𝑛 for all 𝑛, where 𝑛 ≥ 𝑛0



17

Big-Oh..

• For the statement 𝑓 𝑛 = O(𝑔(𝑛)) to be informative, 𝑔(𝑛)
should be as small a function of 𝑛 as one can come up with

– 3𝑛 + 3 = O(𝑛) vs. 3𝑛 + 3 = O(𝑛2)

• Fantastic names

– O(1) mean a computing time that is a constant
– O(𝑛) is called linear

– O(𝑛2) is called quadratic

– O(𝑛3) is called cubic
– O(2𝑛) is called exponential

• Ordering

– O 1 < O log𝑛 < O 𝑛 < O 𝑛log𝑛 < O 𝑛2 < O 𝑛3 <

O 2𝑛



18

Big-Oh…

• O 1 < O log𝑛 < O 𝑛 < O 𝑛log𝑛 < O 𝑛2 < O 2𝑛



19

Big-Oh…

• O 1 < O log𝑛 < O 𝑛 < O 𝑛log𝑛 < O 𝑛2 < O 𝑛3 <

O 𝑛𝑐 < O 2𝑛 < O 3𝑛 < O 𝑐𝑛 < O 𝑛! < O 𝑛𝑛 <

O 𝑛𝑐
𝑛



20

Omega

• The function 𝑔(𝑛) is a lower bound on 𝑓(𝑛)



21

Omega

• The function 𝑔(𝑛) is a lower bound on 𝑓(𝑛)



22

Omega

• The function 𝑔(𝑛) is a lower bound on 𝑓(𝑛)



23

Omega

• The function 𝑔(𝑛) is a lower bound on 𝑓(𝑛)

• For the statement 𝑓 𝑛 = Ω(𝑔(𝑛)) to be informative, 𝑔(𝑛)
should be as large a function of 𝑛 as possible
– 3𝑛 + 3 = Ω(𝑛) vs. 3𝑛 + 3 = Ω(1)

– 6 × 2𝑛 + 𝑛2 = Ω(2𝑛) vs. 6 × 2𝑛 + 𝑛2 = Ω(1)



24

Theta

• The theta is more precise than both big-oh and omega
– 𝑔(𝑛) is both an upper and lower bound on 𝑓(𝑛)



25

Theta

• The theta is more precise than both big-oh and omega
– 𝑔(𝑛) is both an upper and lower bound on 𝑓(𝑛)



26

Example

• Given a recursive function 𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛, where 𝑇 1 =

0, please write down the time complexity in big-oh for the 
function
– We assume 𝑛 is a power of 2 for simplification

• That is 2𝑥 = 𝑛

𝑇 𝑛 = 2 × 𝑇
𝑛

2
+ 𝑛

= 2 × 2 × 𝑇
𝑛

4
+
𝑛

2
+ 𝑛 = 4 × 𝑇

𝑛

4
+ 2 × 𝑛

= 4 × 2 × 𝑇
𝑛

8
+
𝑛

4
+ 2 × 𝑛 = 8 × 𝑇

𝑛

8
+ 3 × 𝑛

= ⋯

= 𝑛 × 𝑇
𝑛

𝑛
+ log2 𝑛 × 𝑛 = 𝑛 log2 𝑛

∴ 𝑇 𝑛 = O(𝑛 log2 𝑛)



27

Questions?

kychen@mail.ntust.edu.tw


