Performance Analysis

Kuan-Yu Chen (i & %)

2020/09/21 @ TR-313, NTUST



Review

Data type determines the set of values that a data item can
take and the operations that can be performed on the item

Data Type Size in Bytes Range Use
char 1 -128 to 127 To store characters
int 2 -32768 to 32767 To store integer numbers
float 4 3.4E-38 to 3.4E+38 To store floating point numbers
double 8 1.7E-308 to 1.7E+308 To store big floating point numbers

Algorithm and Program

— Algorithms + Data Structures = Programs

Recursive Functions
— Direct

— Indirect

— Tail

— Compared with non-recursive functions



Space and Time Complexity

 Analyzing an algorithm means determining the amount of
resources (such as time and memory) needed to execute it

— The time complexity of an algorithm is basically the running
time of a program as a function of a given input

— The space complexity of an algorithm is the amount of
computer memory that is required during the program
execution as a function of a given input



Space Complexity

« The space analysis can be classified into two parts
— Fixed part

 The instruction space, space for simple variables, space for
constants, etc

— Variable part
 Space needed by referenced variables

« The recursion stack space

— Accordingly, the space requirement S(P) of a program P can be
defined

S(P) =c+3S,
Y

variable part
depend on the task

- We usually concentrate on §,,



Recursion Stack Space.

« Given an Ackerman’s function A(m, n), please calculate
A(1,2)

n+1, ifm=20
A(m,n) = A(m—1,1), ifn=0
A(m —1,A(m,n — 1)), otherwise
A(1,2) = A(0,A(1,1)) '\
A(1,1) = A(0,4(1,0))

A(1,0) = A(0,1) /

A(0,1) =2



Recursion Stack Space..

« Given an Ackerman’s function A(m, n), please calculate
A(1,2)

n+1, ifm=20
A(m’ n) = A(m — 1,1), lle =0
A(m —1,A(m,n — 1)), otherwise
A(1,2) = A(0,A4(1,1)) = A(0,3) = 4
A(1,1) = A(0,A4(1,0)) = A(0,2) =3
A(1,0) = A(0,1) = 2

A(0,1) =2



Recursion Stack Space...

« Given an Ackerman’s function A(m, n), please calculate
A(1,2)

n+1, ifm=20
A(m,n) = A(m—1,1), ifn=0
A(m —1,A(m,n — 1)), otherwise
A(1,2) = A(0,A(1,1)) \
A(1,1) = A(0,A(1,0)) )

A(L1)

A(1,0) = A(0,1) / ACL2)
A(0,1) = 2 '



Recursion Stack Space....

« Given an Ackerman’s function A(m, n), please calculate

A(1,2)

n+1,
A(m,n) = A(m —1,1),
A(m—1,A(m,n - 1)),

A(1,2) = A(0,A4(1,1)) = A(0,3) = 4
A(1,1) = A(0,A4(1,0)) = A(0,2) =3
A(1,0) = A(0,1) =2

A(0,1) =2

ifm=0
ifn=0
otherwise

A(1,0)
A(L1)
A(1,2)



Time Complexity

o The time, T(P), taken by a program P is the sum of the
compile time and the run (execution) time

— We mainly concentrate on the run time of a program
T(P) =c+T,
t

run time

— There are two ways to determine the run time
« Measurement
Execute the program
Record the CPU time
 Analysis
Count only the number of program steps
Count the number of instructions



Example

« How many times does the function call_fun() execute?

for( a=1; a<=n; at++ )
for( b =1 ; b <= a ; b++ )
for( c =1 ; c <= a ; c+t+ )
if( b !=c)

call fun() ;

n n O nn+DEn+1) nn+1) nn+)n-1)

a=1

Zn: 12422 4 dm2 = nn+1)(2n+ 1)
6

10



Expressing Time and Space Complexity

« The time and space complexities of a given function f(n),
where n is a given input for the algorithm, can be expressed

by some notations

— We introduce some terminologies that will enable us to make
meaningful but inexact statements about the time and space

complexities of a program

Definition [Big ‘‘oh’’]: f(n) = O(g (n)) (read as ‘‘f of n is big oh of g of »n”’) iff (if and
only if) there exist positive constants ¢ and n such that f(n) <cg (n) forall n,n>ny. O |

Definition: [Omega] f(n) = (g (n)) (read as *‘f of n is omega of g of »’’) iff there exist
positive constants ¢ and n such that f(n) 2 cg (n) forall n,n2ny. O

Definition: [Theta] f(n) = ©(g (n)) (read as ‘‘f of n is theta of g of n’’) iff there exist po-
sitive constants ¢, c,,and ny suchthat c,g(n) <f(n)<c,g(n)forall n,n=2ny. O |
11



Big-Oh.

Definition [Big ‘‘oh’’]: f(n) = O(g(n)) (read as ‘‘f of n is big oh of g of »n’’) iff (if and
only if) there exist positive constants ¢ and #n, such that f(n) <cg (n) forall n,n 2 ny. O

e f(n) =0(g(n)) means that c X g(n) is an upper bound on
the value of f(n) for all n, where n > n,

cg(n)

f(n)

n

f(n) = 0(g(n)) 5

ng




Big-Oh.

Definition [Big ‘‘oh’’]: f(n) = O(g(n)) (read as ‘‘f of n is big oh of g of »n’’) iff (if and
only if) there exist positive constants ¢ and #n, such that f(n) <cg (n) forall n,n 2 ny. O \

e f(n) =0(g(n)) means that c X g(n) is an upper bound on
the value of f(n) for all n, where n > n,

Example 1.14: 3n+2=0(n)as3n+2<4nforalln=>2. 3n+3=0(n)as3n+3<4n
forall n=>3. 100n + 6 = O(n) as 100n + 6 < 101xn for n > 10. 10n? - 4n + 2 = O(n?) as
10n% + 4n + 2 < 11n? for n = 5. 1000n? + 100n — 6 = O(n?) as 1000n> + 100n — 6 <
100112 for n > 100. 6%2" + n? = O2") as 6%2" + n?> <7x2" forn >4. 3n+3 = 0(n?) as
3n+3<3n’forn=2. 10n> +4n+2=0n*)as 10n> +4n +2<10n* forn=2. 3n+2
# O(1) as 3n + 2 is not less than or equal to ¢ for any constant ¢ and all n, n > n,. 10n° +
4n+2#0(n). O

13



Big-Oh.

Definition [Big ‘‘oh’’]: f(n) = O(g(n)) (read as ‘‘f of n is big oh of g of »n’’) iff (if and
only if) there exist positive constants ¢ and #n, such that f(n) <cg (n) forall n,n 2 ny. O \

e f(n) =0(g(n)) means that c X g(n) is an upper bound on
the value of f(n) for all n, where n > n,

Example 1.14: 3n+2=0(n)as3n+2<4nforalln=2. 3n+3=0(n)as3n+3<4n
forall n=>3. 100n + 6 = O(n) as 100n + 6 < 101x for n > 10. 10n? -+ 4n + 2 = O(n?) as
10n2 + 4n +2 < 11n? for n = 5. 1000n2 + 1001 — 6 = O(n?) as 100072 + 100n — 6 <
100112 for n > 100. 6%2" + n? = O2") as 6%2" + n?> <7x2" forn >4. 3n+3 = 0(n?) as
3n+3<3n’forn=2. 10n> +4n+2=0n*)as 10n> +4n +2<10n* forn=2. 3n+2
# O(1) as 3n + 2 is not less than or equal to ¢ for any constant ¢ and all n, n > n,. 10n° +
4n+2#0(n). O

14



Big-Oh.

Definition [Big ‘‘oh’’]: f(n) = O(g(n)) (read as ‘‘f of n is big oh of g of »n’’) iff (if and
only if) there exist positive constants ¢ and #n, such that f(n) <cg (n) forall n,n 2 ny. O \

e f(n) =0(g(n)) means that c X g(n) is an upper bound on
the value of f(n) for all n, where n > n,

Example 1.14: 3n+2=0(n)as3n+2<4nforalln=2. 3n+3=0(n)as3n+3<4n
forall n=>3. 100n + 6 = O(n) as 100n + 6 < 101xn for n > 10. 10n? - 4n + 2 = O(n?) as
10n% + 4n + 2 < 11n? for n = 5. 1000n? + 100n — 6 = O(n?) as 1000n> + 100n — 6 <
100112 for n > 100. 6%2" + n> = O2") as 6%2" + n*> < 7x2" forn >4. 3n+3 = O(n?) as
3n+3<3n’forn=2. 10n> +4n+2=0n"*)as 10n? +4n +2<10n* forn=2. 3n+2
# O(1) as 3n + 2 is not less than or equal to ¢ for any constant ¢ and all n, n > n,. 10n° +
4n+2#0(n). O

15



Big-Oh.

Definition [Big ‘‘oh’’]: f(n) = O(g(n)) (read as ‘‘f of n is big oh of g of »n’’) iff (if and
only if) there exist positive constants ¢ and #n, such that f(n) <cg (n) forall n,n 2 ny. O \

e f(n) =0(g(n)) means that c X g(n) is an upper bound on
the value of f(n) for all n, where n > n,

Example 1.14: 3n+2=0(n)as3n+2<4nforalln=2. 3n+3=0(n)as3n+3<4n
forall n=>3. 100n + 6 = O(n) as 100n + 6 < 101xn for n > 10. 10n? - 4n + 2 = O(n?) as
10n% + 4n + 2 < 11n? for n = 5. 1000n? + 100n — 6 = O(n?) as 1000n> + 100n — 6 <
100112 for n > 100. 6%2" + n? = O2") as 6%2" + n?> <7x2" forn >4. 3n+3 = 0(n?) as
3n+3<3n’forn=2. 10n> +4n+2=0n*)as 10n? +4n +2<10n* forn=2. 3n+2
# O(1) as 3n + 2 is not less than or equal to ¢ for any constant ¢ and all n, n > n,. 10n° +
4n+2#0(n). O ) i

16



Big-Oh..

For the statement f(n) = O(g(n)) to be informative, g(n)
should be as small a function of n as one can come up with

- 3n+3=0(Mn)vs.3n+ 3 =0(n?

Fantastic names
- 0(1) mean a computing time that is a constant
— O(n) is called linear
- 0(n?) is called quadratic
- 0(n?) is called cubic
— 0(2") is called exponential

Ordering
- 0(1) < 0(logn) < 0(n) < O(nlogn) < 0(n?) < 0(n?) <
0(2™)
17



Big-Oh...

e 0(1) < 0(logn) < 0(n) < O(nlogn) < 0(n?) < 0(2™)

18



Big-Oh...

e 0(1) < 0(logn) < 0(n) < O(nlogn) < 0(n?) < 0(n?) <
O(n¢) <0(2™) <03 <0(c™) <0(n) <0(n™) <
O(Tlcn) 2 n2

19



Omega

Definition: [Omega] f(n) = Q(g (n)) (read as ‘‘f of n is omega of g of n’’) iff there exist
positive constants ¢ and ny such that f(n) 2cg (n) forall n,n2ny. O

« The function g(n) is a lower bound on f(n)

J(n)

cg(n)

n
Ry

f(n) =Q(g(n))

20




Omega

Definition: [Omega] f(n) = Q(g (n)) (read as ‘‘f of n is omega of g of n’’) iff there exist
positive constants ¢ and ny such that f(n) 2cg (n) forall n,n2ny. O

« The function g(n) is a lower bound on f(n)

Example 1.15: 3n+ 2 =Q(n) as 3n + 2 2 3n for n 2 1 (actually the inequality holds for
n 2 0, but the definition of Q requires an ny>0). 3n +3=Q((n)as3n+3>3nforn=>1.
1007 + 6 = Q(n) as 100n + 6 > 100n for n > 1. 10n% +4n + 2 = Q(n?) as 10n% + 4n +2 =
n’forn>1. 6%2" + n? = Q(2") as 6%2" + n* > 2" for n > 1. Observe also that 3n + 3 =
Q(1); 10n% + 4n +2 = Q(n); 10n? + 4n + 2 = Q(1); 652" + n? = Q(n'?); 62" + n* =
Q(n°92); 62" + n? = Q(n?); 62" + n? = Q(n); and 6*2" + n? = Q(1). O

21




Omega

Definition: [Omega] f(n) = Q(g (n)) (read as ‘‘f of n is omega of g of n’’) iff there exist
positive constants ¢ and ny such that f(n) 2cg (n) forall n,n2ny. O

« The function g(n) is a lower bound on f(n)

Example 1.15: 3n+ 2 =Q(n) as 3n + 2 2 3n for n 2 1 (actually the inequality holds for
n 2 0, but the definition of Q requires an ny>0). 3n +3=Q((n)as3n+3>3nforn=>1.
100n+6=Q(n)as 100n+ 6> 100nforn>1. 10n? +4n + 2 = Q(n?) as 10n% + 4n +2 >
n? forn>1. 6%¥2" + n> = Q(2") as 6+2" + n> >2" for n > 1. Observe also that 3n + 3 =
Q(1); 1072 + 4n + 2 = Q(n); 10n° + 4n + 2 = Q(1); 6%2" + n? = Q(n'P); 652" + n* =
Q(n92); 6+2" + n? = Q(n?); 6¥2" + n? = Q(n); and 6¥2" + n? = Q(1). O

22




Omega

Definition: [Omega] f(n) = Q(g (n)) (read as ‘‘f of n is omega of g of n’’) iff there exist
positive constants ¢ and ny such that f(n) 2cg (n) forall n,n2ny. O

« The function g(n) is a lower bound on f(n)

Example 1.15: 3n+ 2 =Q(n) as 3n + 2 2 3n for n 2 1 (actually the inequality holds for
n 2 0, but the definition of Q requires an ny>0). 3n +3=Q((n)as3n+3>3nforn=>1.
100n+6=Q(n)as 100n+ 6> 100nforn>1. 10n? +4n + 2 = Q(n?) as 10n% + 4n +2 >
n?forn>1. 6%2" + n? = Q(2") as 6%2" + n* > 2" for n > 1. Observe also that 3n + 3 =
Q(1); 10n? + 4n + 2 = Q(n); 10n> + 4n + 2 = Q(1); 6%2" + n? = Q(n'?); 6%2" + n* =
Q(n°92); 62" + n? = Q(n?); 62" + n? = Q(n); and 6*2" + n? = Q(1). O

o For the statement f(n) = Q(g(n)) to be informative, g(n)
should be as large a function of n as possible

-3n+3=0QMn)vs.3n+3 =0Q(1)
- 6X2"+n%=002" vs.6x2"+n%*=0(1)

23




Theta

Definition: [Theta] f(n) = ©(g (n)) (read as ‘‘f of n is theta of g of n’’) iff there exist po-

sitive constants ¢, c,,and ng suchthat c,g(n) <f(n)<c,g(n)forall n,n=2nqy. O

 The theta is more precise than both big-oh and omega
- g(n) is both an upper and lower bound on f (1)

c28(n)

J(n)

c1g(n)

Ny

n

f(n) = ©(g(n))

24



Theta

Definition: [Theta] f(n) = ©(g (n)) (read as ‘‘f of n is theta of g of n’’) iff there exist po-
sitive constants ¢, c,,and ng suchthat c,g(n) <f(n)<c,g(n)forall n,n=2nqy. O

« The theta is more precise than both big-oh and omega
- g(n) is both an upper and lower bound on f (1)

Example 1.16: 3n+ 2 = @(n)as3n+2>3nforalln>2 and 3n + 2<4n forall n=>2,
soc, =3,c, =4,and ny =2.3n + 3 =0O(n); 10n? +4n+2= G)(n ); 6%2" + n* -@(2”)
and 10*logn+4 @(logn) 3n+2#0(); 3n+3¢®(n2) 1012 +4n+2¢®(n) 1012
+4n+2#0(1); 652" + n2 20(n?); 6¥2" + n? £On'®); and 6+2" + n? 2 O(1). O

25



Example

« Given a recursive function T(n) = 2T 2) + n, where T(1) =
2

0, please write down the time complexity in big-oh for the

function

— We assume n is a power of 2 for simplification

e Thatis2¥* =n

T(n)=2><T(E)+n

2

i n
=2 X 2><T(—

4
n
38

=4 X ZXT(

)
)

_|_

4|

L —4><T(
2| T T
n

n

4
n

+2><n=8><T(§)+3><n

)+2><n

n
=nxT(£)+(log2n) Xn=nlog,n

~ T(n) = 0(nlog, n)

26



Questions?

kychen@mail.ntust.edu.tw

27



